Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Sci Total Environ ; 926: 171937, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527534

RESUMO

The tremendous application potentiality of transitional metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS2) nanosheets, will unavoidably lead to increasing release into the environment, which could influence the fate and toxicity of co-existed contaminants. The present study discovered that 59.8 % of trivalent antimony [Sb(III)] was transformed by MoS2 to pentavalent Sb [Sb(V)] in aqueous solutions under light illumination, which was due to hole oxidation on the nanosheet surfaces. A synergistic toxicity between MoS2 and Sb(III, V) to algae (Chlorella vulgaris) was observed, as demonstrated by the lower median-effect concentrations of MoS2 + Sb(III)/Sb(V) (13.1 and 20.9 mg/L, respectively) than Sb(III)/Sb(V) (38.8 and 92.5 mg/L, respectively) alone. Particularly, MoS2 at noncytotoxic doses notably increased the bioaccumulation of Sb(III, V) in algae, causing aggravated oxidative damage, photosynthetic inhibition, and structural alterations. Metabolomics indicated that oxidative stress and membrane permeabilization were primarily associated with down-regulated amino acids involved in glutathione biosynthesis and unsaturated fatty acids. MoS2 co-exposure remarkably decreased the levels of thiol antidotes (glutathione and phytochelatins) and aggravated the inhibition on energy metabolism and ATP synthesis, compromising the Sb(III, V) detoxification and efflux. Additionally, extracellular P was captured by the nanosheets, also contributing to the uptake of Sb(V). Our findings emphasized the nonignorability of TMDs even at environmental levels in affecting the ecological hazard of metalloids, providing insight into comprehensive safety assessment of TMDs.


Assuntos
Chlorella vulgaris , Dissulfetos , Metaloides , Antimônio/metabolismo , Molibdênio/toxicidade , Adsorção , Chlorella vulgaris/metabolismo , Glutationa
2.
J Environ Sci (China) ; 142: 92-102, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527899

RESUMO

Cadmium (Cd) and excess molybdenum (Mo) pose serious threats to animal health. Our previous study has determined that Cd and/or Mo exposure can cause ovarian damage of ducks, while the specific mechanism is still obscure. To further investigate the toxic mechanism of Cd and Mo co-exposure in the ovary, forty 8-day-old female ducks were randomly allocated into four groups for 16 weeks, and the doses of Cd and Mo in basic diet per kg were as follows: control group, Mo group (100 mg Mo), Cd group (4 mg Cd), and Mo + Cd group (100 mg Mo + 4 mg Cd). Cadmium sulfate 8/3-hydrate (CdSO4·8/3H2O) and hexaammonium molybdate ((NH4)6Mo7O24·4H2O) were the origins of Cd and Mo, respectively. At the 16th week of the experiment, all ovary tissues were collected for the detection of related indexes. The data indicated that Mo and/or Cd induced trace element disorders and Th1/Th2 balance to divert toward Th1 in the ovary, which activated endoplasmic reticulum (ER) stress and then provoked necroptosis through triggering RIPK1/RIPK3/MLKL signaling pathway, and eventually caused ovarian pathological injuries and necroptosis characteristics. The alterations of above indicators were most apparent in the joint group. Above all, this research illustrates that Mo and/or Cd exposure can initiate necroptosis through Th1/Th2 imbalance-modulated ER stress in duck ovaries, and Mo and Cd combined exposure aggravates ovarian injuries. This research explores the molecular mechanism of necroptosis caused by Mo and/or Cd, which reveals that ER stress attenuation may be a therapeutic target to alleviate necroptosis.


Assuntos
Patos , Molibdênio , Animais , Feminino , Molibdênio/toxicidade , Patos/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Ovário/metabolismo , Necroptose , Estresse do Retículo Endoplasmático
3.
Environ Toxicol ; 39(1): 172-183, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37676969

RESUMO

Excess molybdenum (Mo) is harmful to animals, but its nephrotoxicity has not been comprehensively explained. To appraise the influences of excess Mo on Ca homeostasis and apoptosis via PLC/IP3 /IP3 R axis, primary duck renal tubular epithelial cells were exposed to 480 µM and 960 µM Mo, and joint of 960 µM Mo and 10 µM 2-APB or 0.125 µM U-73122 for 12 h (U-73122 pretreated for 1 h), respectively. The data revealed that the increment of [Ca2+ ]c induced by Mo mainly originated from intracellular Ca storage. Mo exposure reduced [Ca2+ ]ER , elevated [Ca2+ ]mit , [Ca2+ ]c , and the expression of Ca homeostasis-related factors (Calpain, CaN, CRT, GRP94, GRP78 and CaMKII). 2-APB could effectively reverse subcellular Ca2+ redistribution by inhibiting IP3 R, which confirmed that [Ca2+ ]c overload induced by Mo originated from ER. Additionally, PLC inhibitor U-73122 remarkably mitigated the change, and dramatically reduced the number of apoptotic cells, the expression of Bak-1, Bax, cleaved-Caspase-3/Caspase-3, and notably increased the expression of Bcl-xL, Bcl-2, and Bcl-2/Bax ratio. Overall, the results confirmed that the Ca2+ liberation of ER via PLC/IP3 /IP3 R axis was the main cause of [Ca2+ ]c overload, and then stimulated apoptosis in duck renal tubular epithelial cells.


Assuntos
Patos , Molibdênio , Animais , Patos/metabolismo , Molibdênio/toxicidade , Molibdênio/metabolismo , Caspase 3/metabolismo , Proteína X Associada a bcl-2/metabolismo , Células Epiteliais , Apoptose , Cálcio/metabolismo
4.
Int J Occup Med Environ Health ; 37(1): 18-33, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38038449

RESUMO

OBJECTIVES: Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has considerable applicative potential for both qualitative and quantitative analyses of elemental spatial distribution and concentration. It provides high resolutions at pg-level detection limits. These qualities make it very useful for analyzing biological samples. The present study responds to the growing demand for adequate analytical methods which would allow to assess the distribution of nanostructured molybdenum(IV) disulfide (MoS2) in organs. It was also motivated by an apparent lack of literature on the biological effects of MoS2 in living organisms. The study was aimed at using LA-ICP-MS for comparing micro- and nanosized MoS2 ditribution in selected rat tissue samples (lung, liver, brain and spleen tissues) after the intratracheal instillation (7 administrations) of MoS2 nano- and microparticles vs. controls. MATERIAL AND METHODS: The experimental study, approved by the Ethics Committee for Animal Experiments was performed using albino Wistar rats. This was performed at 2-week intervals at a dose of 5 mg/kg b.w., followed by an analysis after 90 days of exposure. The MoS2 levels in control tissues were determined with the laser ablation system at optimized operating conditions. The parameter optimization process for the LA system was conducted using The National Institute of Standards and Technology (NIST) glass standard reference materials. RESULTS: Instrument parameters were optimized. The study found that molybdenum (Mo) levels in the lungs of microparticle-exposed rats were higher compared to nanoparticle-exposed rats. The opposite results were found for liver and spleen tissues. Brain Mo concentrations were below the detection limit. CONCLUSIONS: The LA-ICP-MS technique may be used as an important tool for visualizing the distribution of Mo on the surface of soft samples through quantitative and qualitative elemental mapping. Int J Occup Med Environ Health. 2024;37(1):18-33.


Assuntos
Terapia a Laser , Molibdênio , Ratos , Animais , Molibdênio/toxicidade , Espectrometria de Massas/métodos , Lasers , Dissulfetos/toxicidade
5.
J Appl Toxicol ; 44(4): 595-608, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37968889

RESUMO

In this study, molybdenum(IV) sulfide (MoS2 ) nanoparticles (97 ± 32 nm) and microparticles (1.92 ± 0.64 µm) stabilized with poly (vinylpolypyrrolidone) (PVP) were administered intratracheally to male and female rats (dose of 1.5 or 5 mg/kg bw), every 14 days for 90 days (seven administrations in total). Blood parameters were assessed during and at the end of the study (hematology, biochemistry including glucose, albumins, uric acid, urea, high density lipoprotein HDL, total cholesterol, triglycerides, aspartate transaminase, and alanine transaminase ALT). Bronchoalveolar lavage fluid (BALF) analyses included cell viability, biochemistry (total protein concentration, lactate dehydrogenase, and glutathione peroxidase activity), and cytokine levels (tumor necrosis factor α, TNF-α, macrophage inflammatory protein 2-alpha, MIP-2, and cytokine-induced neutrophil chemoattractant-2, CINC-2). Tissues were subjected to routine histopathological and electron microscopy (STEM) examinations. No overt signs of chronic toxicity were observed. Differential cell counts in BALF revealed no significant differences between the animal groups. An increase in MIP-2 and a decrease in TNF-α were observed in BALF in the exposed males. The histopathological changes in the lung evaluated according to a developed classification system (based on severity of inflammation, range 0-4, with 4 indicating the most severe changes) showed average histopathological score of 1.33 for animals exposed to nanoparticles and microparticles at the lower dose, 1.72 after exposure to nanoparticles at the higher dose, and 2.83 for animals exposed to microparticles at the higher dose. In summary, it was shown that nanosized and microsized MoS2 can trigger dose-dependent inflammatory reactions in the lungs of rats after multiple intratracheal instillation irrespective of the animal sex. Some evidence indicates a higher lung pro-inflammatory potential of the microform.


Assuntos
Nanopartículas , Pneumonia , Feminino , Ratos , Masculino , Animais , Molibdênio/toxicidade , Molibdênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Pulmão , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Pneumonia/induzido quimicamente , Nanopartículas/toxicidade , Inflamação/patologia , Sulfetos/toxicidade
6.
J Hazard Mater ; 461: 132641, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37797574

RESUMO

Chromium (Cr) is a hazardous heavy metal that negatively affects animals and plants. The micronutrients selenium (Se) and molybdenum (Mo) have been widely shown to alleviate heavy metal toxicity in plants. However, the molecular mechanism of Cr chelation on the cell wall by combined treatment with Se and Mo has not been reported. Therefore, this study aimed to explore the effects of Se-Mo interactions on the subcellular distribution of Cr (50 µM) and on cell wall composition, structure, functional groups and Cr content, in addition to performing a comprehensive analysis of the transcriptome. Our results showed that the cell walls of shoots and roots accumulated 51.0% and 65.0% of the Cr, respectively. Furthermore, pectin in the cell wall bound 69.5%/90.2% of the Cr in the shoots/roots. Se-Mo interactions upregulated the expression levels of related genes encoding galacturonosyltransferase (GAUT), UTP-glucose-1-phosphate uridylyltransferase (UGP), and UDP-glucose-4-epimerase (GALE), involved in polysaccharide biosynthesis, thereby increasing pectin and cellulose levels. Moreover, combined treatment with Se and Mo increased the lignin content and cell wall thickness by upregulating the expression levels of genes encoding cinnamyl alcohol dehydrogenase (CAD), peroxidase (POX) and phenylalanine amino-lyase (PAL), involved in lignin biosynthesis. Fourier-transform infrared (FTIR) spectroscopy results showed that Se + Mo treatment (in combination) increased the number of carboxylic acid groups (-COOH) groups, thereby enhancing the Cr chelation ability. The results not only elucidate the molecular mechanism of action of Se-Mo interactions in mitigating Cr toxicity but also provide new insights for phytoremediation and food safety.


Assuntos
Selênio , Selênio/farmacologia , Selênio/metabolismo , Molibdênio/toxicidade , Nicotiana/genética , Nicotiana/metabolismo , Cromo/metabolismo , Lignina , Pectinas/farmacologia , Parede Celular/metabolismo
7.
Environ Pollut ; 334: 122207, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37467914

RESUMO

Molybdenum (Mo) is an essential trace element that exists in all tissues of the human body, but excessive Mo intake has a toxic effect. Cadmium (Cd) is a widely known and harmful heavy metal that exists in the environment. Although studies on Mo and Cd are available, it is still unknown how the combination of Mo and Cd causes pulmonary injury. Forty-eight sheep that were 2 months old were chosen and randomly separated into four groups as follows: Control group, Mo group, Cd group, and Mo + Cd group. The experiment lasted 50 days. The results showed that Mo and/or Cd caused significant pathological damage and oxidative stress in the lungs of sheep. Moreover, Mo and/or Cd exposure could downregulate the expression levels of xCT (SLC7A11 and SLC3A2), GPX4 and FTH-1 and upregulate the expression levels of PTGS2 and NCOA4, which led to iron overload and ferroptosis. Ferroptosis induced Wnt/ß-catenin-mediated fibrosis by elevating the expression levels of Caveolin-1 (CAV-1), Wnt 1, Wnt3a, ß-catenin (CTNNB1), TCF4, Cyclin D1, mmp7, α-SMA (ACTA2), Collagen 1 (COL1A1) and Vimentin. These changes were particularly noticeable in the Mo and Cd combination group. In conclusion, these data demonstrated that Mo and/or Cd exposure led to lung ferroptosis by inhibiting the SLC7A11/GSH/GPX4 axis, which in turn increases CAV-1 expression and subsequently activates the Wnt/ß-catenin pathway, leading to fibrosis in sheep lungs.


Assuntos
Ferroptose , Molibdênio , Humanos , Animais , Ovinos , Lactente , Molibdênio/toxicidade , Cádmio/toxicidade , beta Catenina , Caveolina 1 , Fibrose , Pulmão
8.
Chem Biol Interact ; 382: 110617, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37385403

RESUMO

Accumulation of the heavy metals molybdenum (Mo) and cadmium (Cd) in the liver can induce organelle damage and inflammation, resulting in hepatotoxicity. The effect of Mo and/or Cd on sheep hepatocytes was investigated by determining the relationship between the mitochondria-associated endoplasmic reticulum membrane (MAM) and NLRP3 inflammasome. Sheep hepatocytes were divided into four groups: the control group, Mo group (600 µM Mo), Cd group (4 µM Cd) and Mo + Cd group (600 µM Mo+4 µM Cd). The results showed that Mo and/or Cd exposure increased the levels of lactate dehydrogenase (LDH) and nitric oxide (NO) in the cell culture supernatant, elevated the levels of intracellular Ca2+ and mitochondrial Ca2+, downregulated the expression of MAM-related factors (IP3R, GRP75, VDAC1, PERK, ERO1-α, Mfn1, Mfn2, ERP44), shortened the length of the MAM and reduced the formation of the MAM structure, eventually causing MAM dysfunction. Moreover, the expression levels of NLRP3 inflammasome-related factors (NLRP3, Caspase1, IL-1ß, IL-6, TNF-α) were also dramatically increased after Mo and Cd exposure, triggering NLRP3 inflammasome production. However, an IP3R inhibitor, 2-APB treatment significantly alleviated these changes. Overall, the data indicate that Mo and Cd coexposure leads to structural disruption and dysfunction of MAM, disrupts cellular Ca2+ homeostasis, and increases NLRP3 inflammasome production in sheep hepatocytes. However, the inhibition of IP3R alleviates NLRP3 inflammasome production induced by Mo and Cd.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Ovinos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Cádmio/toxicidade , Molibdênio/toxicidade , Hepatócitos , Retículo Endoplasmático/metabolismo , Mitocôndrias
9.
Toxicology ; 485: 153428, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36641057

RESUMO

Molybdenum disulphide (MoS2) is a constituent of many products. To protect humans, it is important to know at what air concentrations it becomes toxic. For this, we tested MoS2 particles by nose-only inhalation in mice. Exposures were set to 13, 50 and 150 mg MoS2/m3 (=8, 30 and 90 mg Mo/m3), corresponding to Low, Mid and High exposure. The duration was 30 min/day, 5 days/week for 3 weeks. Molybdenum lung-deposition levels were estimated based on aerosol particle size distribution measurements, and empirically determined with inductively coupled plasma-mass spectrometry (ICP-MS). Toxicological endpoints were body weight gain, respiratory function, pulmonary inflammation, histopathology, and genotoxicity (comet assay). Acellular reactive oxygen species (ROS) production was also determined. The aerosolised MoS2 powder had a mean aerodynamic diameter of 800 nm, and a specific surface area of 8.96 m2/g. Alveolar deposition of MoS2 in lung was estimated at 7, 27 and 79 µg/mouse and measured as 35, 101 and 171 µg/mouse for Low, Mid and High exposure, respectively. Body weight gain was lower than in controls at Mid and High exposure. The tidal volume was decreased with Low and Mid exposure on day 15. Increased genotoxicity was seen in bronchoalveolar lavage (BAL) fluid cells at Mid and High exposures. ROS production was substantially lower than for carbon black nanoparticles used as bench-mark, when normalised by mass. Yet if ROS of MoS2 was normalised by surface area, it was similar to that of carbon black, suggesting that a ROS contribution to the observed genotoxicity cannot be ruled out. In conclusion, effects on body weight gain and genotoxicity indicated that Low exposure (13 mg MoS2/m3, corresponding to 0.8 mg/m3 for an 8-hour working day) was a No Observed Adverse Effect Concentration (NOAEC,) while effects on respiratory function suggested this level as a Lowest Observed Adverse Effect Concentration (LOAEC).


Assuntos
Molibdênio , Fuligem , Humanos , Camundongos , Animais , Molibdênio/toxicidade , Espécies Reativas de Oxigênio , Aerossóis e Gotículas Respiratórios , Pulmão/patologia , Líquido da Lavagem Broncoalveolar/química , Aumento de Peso , Exposição por Inalação/efeitos adversos , Tamanho da Partícula
10.
Environ Toxicol ; 38(3): 635-644, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36399440

RESUMO

Excessive amounts of molybdenum (Mo) and cadmium (Cd) are toxicant, but their combined immunotoxicity are not clearly understood. To estimate united impacts of Mo and Cd on pyroptosis and autophagy by PI3K/AKT axis in duck spleens, Mo or/and Cd subchronic toxicity models of ducks were established by feeding diets with different dosages of Mo or/and Cd. Data show that Mo or/and Cd cause oxidative stress by increasing MDA concentration, and decreasing T-AOC, CAT, GSH-Px and T-SOD activities, restrain PI3K/AKT axis by decreasing PI3K, AKT, p-AKT expression levels, which evokes pyroptosis and autophagy by elevating IL-1ß, IL-18 concentrations and NLRP3, Caspase-1, ASC, GSDME, GSDMA, NEK7, IL-1ß, IL-18 expression levels, promoting autophagosomes, LC3 puncta, Atg5, LC3A, LC3B, LC3II/LC3I and Beclin-1 expression levels, and reducing expression levels of P62 and Dynein. Furthermore, the variations of abovementioned indexes are most pronounced in co-treated group. Overall, results reveal that Mo or/and Cd may evoke pyroptosis and autophagy by PI3K/AKT axis in duck spleens. The association of Mo and Cd exacerbates the changes.


Assuntos
Patos , Molibdênio , Animais , Molibdênio/metabolismo , Molibdênio/toxicidade , Patos/metabolismo , Piroptose , Cádmio/toxicidade , Cádmio/metabolismo , Interleucina-18/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Baço/metabolismo , Autofagia
11.
Environ Pollut ; 316(Pt 2): 120574, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36351481

RESUMO

Cadmium (Cd) and excess molybdenum (Mo) have multiple organ toxicity, and testis is one of their important target organs, but the reproductive toxicity of Mo and Cd combined treatment is still unclear. To explore the effects of Mo and Cd co-exposure on DNA damage and autophagy from the insight of ATM/AMPK/mTOR axis in duck testes, we randomly assigned 40 healthy 8-day-old ducks to control, Mo (100 mg/kg Mo), Cd (4 mg/kg Cd), and Mo + Cd groups for 16 weeks. Results found that Mo and/or Cd exposure caused trace elements imbalance, oxidative stress with a decrease in the activities of GSH-Px, CAT, T-SOD and GSH content, an increase in the concentrations of H2O2 and MDA and pathological damage. Additionally, Mo and/or Cd markedly raised DNA damage-related factors expression levels and 8-OHdG content, caused G1/S arrest followed by decreasing CDK2 and Cyclin E protein levels and increasing CDK1 and Cyclin B protein levels, and activated ATM/AMPK/mTOR axis by enhancing p-ATM/ATM, p-AMPK/AMPK and reducing p-mTOR/mTOR protein levels, eventually triggered autophagy by elevating LC3A, LC3B, Atg5, Beclin-1 mRNA levels and LC3II/LC3I, Beclin-1 protein levels and reducing P62, Dynein, mTOR mRNA levels and P62 protein level. Moreover, these changes were most apparent in the combined group. Altogether, the results reveal that autophagy caused by Mo and/or Cd may be associated with activating the DNA damage-mediated ATM/AMPK/mTOR axis in duck testes, and Mo and Cd co-exposure exacerbates these changes.


Assuntos
Cádmio , Patos , Animais , Masculino , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Cádmio/metabolismo , Dano ao DNA , Patos/metabolismo , Peróxido de Hidrogênio/metabolismo , Molibdênio/toxicidade , Estresse Oxidativo , RNA Mensageiro/metabolismo , Testículo/metabolismo , Serina-Treonina Quinases TOR/metabolismo
14.
Environ Toxicol ; 37(12): 2844-2854, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36017731

RESUMO

High molybdenum (Mo) and cadmium (Cd) are harmful to the body, but pulmonary toxicity induced by Mo and Cd co-exposure is unknown. To assess the combined impacts of Mo and Cd on fibrosis through M1 polarization in the lung of ducks, 80 healthy 8-day-old Shaoxing ducks (Anas platyrhyncha) were randomly assigned to 4 groups and fed with containing unequal doses of Mo or/and Cd diet. Lung tissues were collected on the 16th week. Results indicated that Mo or/and Cd significantly increased their contents in the lungs, and led to trace elements disorder and histological abnormality, and oxidative stress accompanied by promoting contents of H2 O2 and MDA and decreasing activities of T-SOD, GSH-Px, and CAT, then activated the TLR4/NF-κB/NLRP3 pathway accompanied by upregulating Caspase-1, ASC, IL-18, IL-1ß, TLR4, NF-κB, and NLRP3 expression levels, and disrupted M1/M2 balance to divert toward M1, which evoked the TGF-ß/Smad2/3-mediated fibrosis by elevating TGF-ß1, Smad2, Smad3, COL1A1, α-SMA, and MMP2 expression levels, and decreasing Smad7 and TIMP2 expression levels. The changes of the combined group were most obvious. To sum up, the research demonstrated that Mo or/and Cd may cause macrophages to polarize toward M1 by oxidative stress-mediated the TLR4/NF-κB/NLRP3 pathway, then result in fibrosis through the TGF-ß1/Smad2/3 pathway in duck lungs. Mo and Cd may worsen lung damage.


Assuntos
Molibdênio , Fibrose Pulmonar , Animais , Molibdênio/toxicidade , Molibdênio/metabolismo , Patos/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , NF-kappa B/metabolismo , Fibrose Pulmonar/induzido quimicamente , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptor 4 Toll-Like/metabolismo , Estresse Oxidativo , Macrófagos/metabolismo
15.
Chemosphere ; 298: 134275, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35278442

RESUMO

Excessive molybdenum (Mo) and cadmium (Cd) are deleterious to animals, but immunotoxicity co-induced by Mo and Cd remains unclear. To ascertain the confederate impacts of Mo and Cd on endoplasmic reticulum (ER) stress-mediated apoptosis by Helper T (Th) cells 1 polarization in the spleen of ducks, we randomly allocated forty 8-day-old Shaoxing ducks (Anas platyrhyncha) into 4 groups and reared them with having different doses of Mo and/or Cd basic diet. At the 16th week of the experiment, serum and spleen tissues were extracted. Data confirmed that Mo and/or Cd strikingly promoted their levels in spleen, caused histological abnormality and trace elements imbalance, and disrupted Th1/Th2 balance to divert toward Th1, then triggered ER stress by increasing three branches PERK/eIF2α/CHOP, IRE1/Caspase-12 and TRAF2/JNK signaling pathways-related genes mRNA and proteins levels, which stimulated apoptosis by elevating Bak-1, Bax, Caspase-9, Caspase-3 mRNA expression, and cleaved-Caspase-9/Caspase-9, cleaved-Caspase-3/Caspase-3 proteins expression as well as apoptosis rate, and decreasing Bcl-xL, Bcl-2 mRNA expression and Bcl-2/Bax ratio. Besides, the variation in combined group was most evident. Briefly, the study indicates that Mo and/or Cd exposure trigger ER stress-induced apoptosis via Th1 polarization in duck spleens, and its mechanism is somehow closely linked with the deposition of Cd and Mo, which may aggravate toxic damage to spleen.


Assuntos
Patos , Molibdênio , Animais , Apoptose , Cádmio/metabolismo , Cádmio/toxicidade , Caspase 3/metabolismo , Caspase 9/metabolismo , Patos/metabolismo , Estresse do Retículo Endoplasmático , Molibdênio/metabolismo , Molibdênio/toxicidade , RNA Mensageiro/metabolismo , Baço/metabolismo , Proteína X Associada a bcl-2/metabolismo
16.
Food Funct ; 13(4): 2142-2154, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35112695

RESUMO

Cadmium (Cd) and excessive molybdenum (Mo) have adverse impacts on animals. However, the hepatotoxicity co-induced by Cd and Mo in ducks has not been fully elucidated. In order to explore the impacts of Cd and Mo co-exposure on pyroptosis and apoptosis by the PTEN/PI3K/AKT pathway in the livers of ducks, 40 healthy 7-day-old Shaoxing ducks (Anas platyrhynchos) were randomly assigned into 4 groups, and Cd or/and Mo were added to the basic diet per kilogram (kg): control group (0 mg Mo and 0 mg Cd), Mo group (100 mg Mo), Cd group (4 mg Cd), and Mo + Cd group (100 mg Mo and 4 mg Cd), with 16 weeks feed management. Results signified that Cd or/and Mo caused trace element imbalance, liver function and histomorphological abnormalities in the duck liver, and activated the PTEN/PI3K/AKT pathway through increasing PTEN mRNA and protein levels, reducing PI3K, AKT mRNA and p-AKT/AKT protein levels, which triggered pyroptosis and apoptosis via increasing Caspase-1, NLRP3, NEK7, ASC, GSDME, GSDMA, IL-1ß and IL-18 mRNA levels, Caspase-1 p20, NLRP3, ASC and GSDMD protein levels, and IL-1ß and IL-18 contents, and increasing Bak-1, Bax, Cyt C and Caspase-3 mRNA levels and cleaved Caspase-3/Caspase-3 protein level, and downregulating Bcl-2 mRNA level and the ratio of Bcl-2 to Bax, respectively. Overall, the results illustrate that pyroptosis and apoptosis induced by Cd or/and Mo may be associated with activating the PTEN/PI3K/AKT pathway in the livers of ducks. There may be a synergy between these two elements.


Assuntos
Cádmio/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/veterinária , Patos , Metais Pesados/toxicidade , Molibdênio/toxicidade , Doenças das Aves Domésticas/etiologia , Criação de Animais Domésticos , Animais , Apoptose/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Proteínas de Membrana/metabolismo , Metais Pesados/farmacologia , Molibdênio/farmacologia , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piroptose/efeitos dos fármacos
17.
J Inorg Biochem ; 229: 111730, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35092914

RESUMO

Excessive molybdenum (Mo) and cadmium (Cd) have toxic effects on animals. However, hepatotoxicity co-induced by Mo and Cd in ducks is still unclear. To evaluate the effects of Cd and Mo co-exposure on autophagy by nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant defense and endoplasmic reticulum stress (ERS) in duck livers, 40 healthy 7-day-old ducks were randomly assigned to 4 groups and fed diets containing different doses of Mo and/or Cd for 16 weeks, respectively. The results verified that Mo and/or Cd induced oxidative stress via decreasing glutathione peroxidase (GSH-Px), catalase (CAT), and total-superoxide dismutase (T-SOD) activities and increasing hydrogen peroxide (H2O2) and malondialdehyde (MDA) concentrations; inhibited Nrf2 axis by downregulating the pathway-related genes and proteins expression levels, and activated ERS through upregulating the protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2a (eIF2a), inositol-requiring enzyme 1 (IRE1) and activating transcription factor 6 (ATF6) pathway-related genes and proteins expression levels, which triggered autophagy via increasing autophagosomes, light chain 3 (LC3) puncta, LC3A, LC3B, autophagy-related gene 5 (Atg5), Bcl-2-interacting protein (Beclin-1) mRNA levels and Beclin-1, microtubule-associated protein light chain 3 II/I (LC3II/LC3I) protein levels, decreasing Dynein, p62, mammalian target of rapamycin (mTOR) mRNA levels and p62 protein level. Additionally, the changes in Mo and Cd group were the most obvious. Briefly, our study reveals that autophagy induced by Mo and/or Cd may be associated with the activation of crosstalk between Nrf2-mediated antioxidant defense response and ERS in duck livers. Mo and Cd may aggravate toxic damage to the liver.


Assuntos
Autofagia/efeitos dos fármacos , Cádmio/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Molibdênio/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Patos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Estresse Oxidativo/efeitos dos fármacos
18.
Toxicology ; 467: 153098, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35026344

RESUMO

Molybdenum, lithium, and tungsten are constituents of many products, and exposure to these elements potentially occurs at work. Therefore it is important to determine at what levels they are toxic, and thus we set out to review their pulmonary toxicity, genotoxicity, and carcinogenicity. After pulmonary exposure, molybdenum and tungsten are increased in multiple tissues; data on the distribution of lithium are limited. Excretion of all three elements is both via faeces and urine. Molybdenum trioxide exerted pulmonary toxicity in a 2-year inhalation study in rats and mice with a lowest-observed-adverse-effect concentration (LOAEC) of 6.6 mg Mo/m3. Lithium chloride had a LOAEC of 1.9 mg Li/m3 after subacute inhalation in rabbits. Tungsten oxide nanoparticles resulted in a no-observed-adverse-effect concentration (NOAEC) of 5 mg/m3 after inhalation in hamsters. In another study, tungsten blue oxide had a LOAEC of 63 mg W/m3 in rats. Concerning genotoxicity, for molybdenum, the in vivo genotoxicity after inhalation remains unknown; however, there was some evidence of carcinogenicity of molybdenum trioxide. The data on the genotoxicity of lithium are equivocal, and one carcinogenicity study was negative. Tungsten seems to have a genotoxic potential, but the data on carcinogenicity are equivocal. In conclusion, for all three elements, dose descriptors for inhalation toxicity were identified, and the potential for genotoxicity and carcinogenicity was assessed.


Assuntos
Transformação Celular Neoplásica/induzido quimicamente , Cloreto de Lítio/toxicidade , Pulmão/efeitos dos fármacos , Molibdênio/toxicidade , Neoplasias/induzido quimicamente , Óxidos/toxicidade , Tungstênio/toxicidade , Animais , Carga Corporal (Radioterapia) , Testes de Carcinogenicidade , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Relação Dose-Resposta a Droga , Humanos , Exposição por Inalação , Cloreto de Lítio/farmacocinética , Pulmão/metabolismo , Pulmão/patologia , Nanopartículas Metálicas , Molibdênio/farmacocinética , Testes de Mutagenicidade , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Óxidos/farmacocinética , Medição de Risco , Tungstênio/farmacocinética
19.
Nanotechnology ; 33(20)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35090149

RESUMO

In recent years, nanozymes based on two-dimensional (2D) nanomaterials have been receiving great interest for cancer photothermal therapy. 2D materials decorated with nanoparticles (NPs) on their surface are advantageous over conventional NPs and 2D material based systems because of their ability to synergistically improve the unique properties of both NPs and 2D materials. In this work, we report a nanozyme based on flower-like MoS2nanoflakes (NFs) by decorating their flower petals with NCeO2using polyethylenimine (PEI) as a linker molecule. A detailed investigation on toxicity, biocompatibility and degradation behavior of fabricated nanozymes in wild-typeDrosophila melanogastermodel revealed that there were no significant effects on the larval size, morphology, larval length, breadth and no time delay in changing larvae to the third instar stage at 7-10 d for MoS2NFs before and after NCeO2decoration. The muscle contraction and locomotion behavior of third instar larvae exhibited high distance coverage for NCeO2decorated MoS2NFs when compared to bare MoS2NFs and control groups. Notably, the MoS2and NCeO2-PEI-MoS2NFs treated groups at 100µg ml-1covered a distance of 38.2 mm (19.4% increase when compared with control) and 49.88 mm (no change when compared with control), respectively. High-resolution transmission electron microscopy investigations on the new born fly gut showed that the NCeO2decoration improved the degradation rate of MoS2NFs. Hence, nanozymes reported here have huge potential in various fields ranging from biosensing, cancer therapy and theranostics to tissue engineering and the treatment of Alzheimer's disease and retinal therapy.


Assuntos
Materiais Biocompatíveis/toxicidade , Cério/toxicidade , Dissulfetos/toxicidade , Molibdênio/toxicidade , Nanoestruturas/toxicidade , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacocinética , Cério/administração & dosagem , Cério/química , Cério/farmacocinética , Dissulfetos/administração & dosagem , Dissulfetos/química , Dissulfetos/farmacocinética , Drosophila melanogaster , Trato Gastrointestinal/metabolismo , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/metabolismo , Locomoção/efeitos dos fármacos , Teste de Materiais , Taxa de Depuração Metabólica , Molibdênio/administração & dosagem , Molibdênio/química , Molibdênio/farmacocinética , Contração Muscular/efeitos dos fármacos , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Polietilenoimina/administração & dosagem , Polietilenoimina/química , Polietilenoimina/farmacocinética , Polietilenoimina/toxicidade , Espécies Reativas de Oxigênio/metabolismo
20.
J Inorg Biochem ; 224: 111584, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34479002

RESUMO

Excessive molybdenum (Mo) and cadmium (Cd) cause toxic effects on animals, but their joint effects on pyroptosis in kidney of ducks remain unclear. 160 healthy 7-day-old ducks were randomly divided into four groups which were fed with basal diet containing different dosages of Mo or/and Cd for 16 weeks. On the 4th, 8th, 12th and 16th weeks, kidney tissue and serum were collected. The results showed that Mo or/and Cd could significantly elevate their contents in kidney, disturb the homeostasis of trace elements, cause renal function impairment and histological abnormality, and oxidative stress as accompanied by increasing hydrogen peroxide (H2O2) and malondialdehyde (MDA) concentrations and decreasing glutathione peroxidase (GSH-Px), catalase (CAT) and total-superoxide dismutase (T-SOD) activities. Simultaneously, Mo or/and Cd could markedly increase interleukin-1ß (IL-1ß), interleukin-18 (IL-18) contents and the expression levels of pyroptosis-related genes (NOD-like receptor protein-3 (NLRP3), Caspase-1, apoptosis-associated speck-like protein (ASC), NIMA-related kinase 7 (NEK7), Gasdermin A (GSDMA), Gasdermin E (GSDME), IL-1ß and IL-18) and proteins (NLRP3, Caspase-1 p20, ASC and Gasdermin D (GSDMD)). Moreover, the changes of above these indicators were more obvious in combined group. Taken together, the results illustrate that Mo and Cd might synergistically lead to oxidative stress and induce pyroptosis via NLRP3/Caspase-1 pathway, whose mechanism is somehow related to Mo and Cd accumulation in duck kidneys.


Assuntos
Cádmio/toxicidade , Rim/metabolismo , Molibdênio/toxicidade , Piroptose/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Caspase 1/metabolismo , Catalase/metabolismo , Patos , Peróxido de Hidrogênio/metabolismo , Interleucina-1beta/metabolismo , Malondialdeído/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oligoelementos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA